Reg. No. :

Question Paper Code : 70398

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Seventh Semester

Computer Science and Engineering

${\rm CS}\ 6704 - {\rm RESOURCE}\ {\rm MANAGEMENT}\ {\rm TECHNIQUES}$

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

(Uses of Normal Table is permitted)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define feasible solution and optimal solution to the linear programming problem.
- 2. What do you mean by shadow pricing?
- 3. What do you understand by degeneracy in a transportation problem?
- 4. How do you convert an unbalanced transportation problem into a balanced?
- 5. List different types of integer programming problems.
- 6. Write the Gomory's constraint for the all integer programming problem whose simplex table (with non integer solution) given below :

	$C_j \rightarrow 2$	20	-10	0		
Basic variable	C_B	X_B	X_1	X_2	X_3	S_1
x_2	20	5/8	0	1	1/5	3/10
x_1	2	5/4	1	0	0	1/4
	$z = C_B X$	$B_{B} = 15$	0	0	-14	-1

- 7. List the uses of classical optimization theory.
- 8. Write the sufficient conditions for Hessian Matrix (H) evaluated at stationary point (X_0) .

- 9. Bring out any four difference between CPM and PERT.
- 10. List out the advantages of PERT.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) An automobile manufacturer makes auto-mobiles and trucks in a factory that is divided into two shops. Shop A, which performs the basic assembly operation must work 5 man-days on each truck but only 2 mandays on each automobile. Shop B, which performs finishing operation must work 3 man-days for each truck or automobile that it produces. Because of men and machine limitations shop A has 180 man-days per week available while shop B has 135 man-days per week. If the manufacturer makes a profit of Rs. 300 on each truck and Rs. 200 on each automobile, how many of each should he produce to maximize his profit?

\mathbf{Or}

(b) Garden Ltd. has two product Rose and Lotus. To produce one unit of Rose, 2 units of material X and 4 units of material Y are required. To produce one unit of Lotus, 3 units of material X and 2 units of material Y are required. At least 16 units of each material must be used in order to meet the committed sales of Rose and Lotus Cost per unit of material X and material Y are Rs. 2.50 per unit and Rs. 0.25 per unit respectively.

Your are required

(1) 10 101 III ulate illatitelliatital illouel (0)
--

- (ii) To solve it for the minimum cost (Graphically). (7)
- 12. (a) Using dual simplex method solve the LPP

Minimize $z = 2x_1 + x_2$

Subject to

 $3x_1 + x_2 \ge 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \ge 3$ and $x_1, x_2 \ge 0$

Or

(b) Solve the transportation problem.

(13)

(13)

	1	2	3	4	Supply
Ι	21	16	25	13	11
II	17	18	14	23	13
III	32	27	18	41	19
Demand	6	10	12	15	

13. (a) Solve the following IPP :

Minimize $Z = -2x_1 - 3x_2$ Subject to $2x_1 + 2x_2 \le 7$ $x_1 \le 2$ $x_2 \le 2$ and $x_1, x_2 \ge 0$ and integers

(b) A students has to take examinations in three courses A, B and C. He has three days available for study. He feels it would be best to devote a whole day to the study of the same course, so that he may study a course for one day, two days or three days or not at all. His estimates of grade he may get by study are as follows :

Course/study days	А	В	С
0	0	1	0
1	1	1	1
2	1	3	3
3	3	4	3

How should he plan to study so that he maximizes the sum of this grades?

14. (a) Illustrate the sensitivity analysis in the Jacobian method.

 \mathbf{Or}

- (b) Describe Kuhn-Tucker conditions with suitable example.
- 15. (a) (i) What is critical path method and further bring out the usefulness of it? (5)
 - (ii) Draw the network diagram exactly with two dummies. (8) Activity Must be proceeded

А	—
В	_
С	В
D	A, C
Е	А
F	\mathbf{E}
G	\mathbf{E}
Η	G
Ι	D, F
J	G, I
Κ	G, I
L	Н, К
	Or

(b) A small project is composed of 7 activities whose time estimates are listed below. Activities are being identified by their beginning (i) and ending (j) node numbers
(13)

Tim	e in w	reeks	
j	to	\mathbf{t}_1	t_{p}
2	1	1	7
3	1	4	7
4	2	2	8
5	1	1	1
5	2	5	14
6	2	5	8
6	3	6	15
	Tim j 2 3 4 5 5 6 6 6	$\begin{array}{cccc} {\rm Time \ in \ w} \\ {\rm j} & {\rm to} \\ 2 & 1 \\ 3 & 1 \\ 4 & 2 \\ 5 & 1 \\ 5 & 2 \\ 6 & 2 \\ 6 & 3 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

(i) Draw the network.

(ii) Calculate the expected variances for each.

- (iii) Find the expected project completed time.
- (iv) Calculate the probability that the project will be completed at least 3 weeks than expected.
- (v) If the project due date is 18 weeks, what is the probability.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

		inan i	11 100	ar pro	acco	are given b
	\mathbf{S}_1	S_2	\mathbf{S}_3	\mathbf{S}_4	S_5	Available
\mathbf{P}_1	5	6	4	2	6	40
P_2	7	9	5	2	5	50
P_3	3	3	3	2	4	60
\mathbf{P}_4	7	8	5	4	4	50
Demand	40	30	40	40	30	

Solve the problem to maximize the profit.

Or

(b) Solve the integer programming problem. (15)

Maximize $Z = 80x_1 + 45x_2$

Subject to

 $\begin{array}{l} x_1+x_2 \leq 7\\ 12x_1+5x_2 \leq 600\\ \text{and}\\ x_1,x_2 \geq 0 \text{ and integer} \end{array}$